# Why Search for Primordial Non-Gaussianity?



Daniel Green
KIPAC & Stanford ITP

Courtesy of thecmb.org

#### Outline

What are we testing?

What are the limits after Planck?

What does this mean for Inflation?

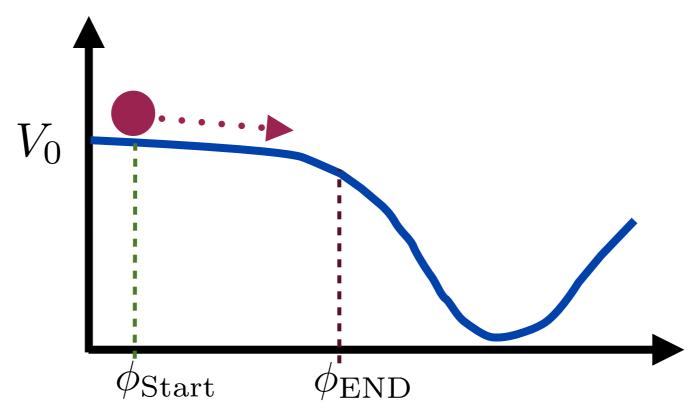
What is the goal?



Inflation: the conventional picture

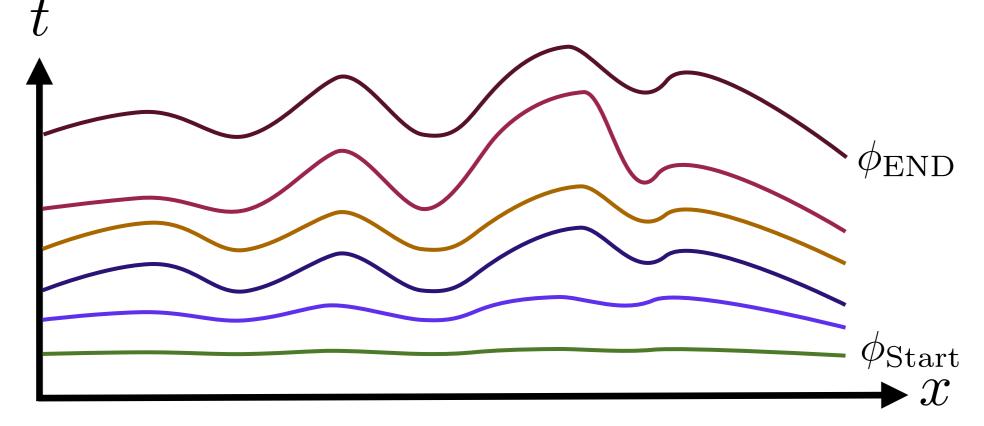
A rolling scalar field  $\mathcal{L}=-rac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi-V(\phi)$ 

$$\phi(t):\dot{\phi}^2\ll V(\phi)$$



Perturbations: the conventional picture

The scalar field fluctuates:  $\phi(x,t) = \phi(t) + \delta\phi(x,t)$ 



Source of metric perturbations :  $\zeta = \frac{\delta a}{a} \sim \frac{H\delta\phi}{\dot{\phi}}$ 

Inflation: a modern view

There are lots of mechanisms beyond slow-roll

Armendáriz-Picón et al., Silverstein & Tong; Alishahiha et al.; ...

They have two things in common:

- (1) Near de Sitter geometry :  $H^2 \gg |\dot{H}|$
- (2) A clock that defines "end of inflation"
- "clock" = Spontaneously broken time-translations

Does not require a scalar field (in principle)

Perturbations: a modern view

Fluctuations describe goldstone boson  $\,\pi\,$ 

$$\mathcal{L}_{\pi} = F(t + \pi, \nabla^{\mu}, g^{\mu\nu})$$

Creminelli et al. Cheung et al.

Effective field theory (EFT) of inflation

Goldstone describes fluctuations of the clock

Goldstone is "eaten" by the metric:  $\zeta = \frac{\delta a}{a} = -H\pi$ 

# The Power Spectrum

The power spectrum is controlled by two scales:

(1) Scale of symmetry breaking:  $f_\pi^2$ 

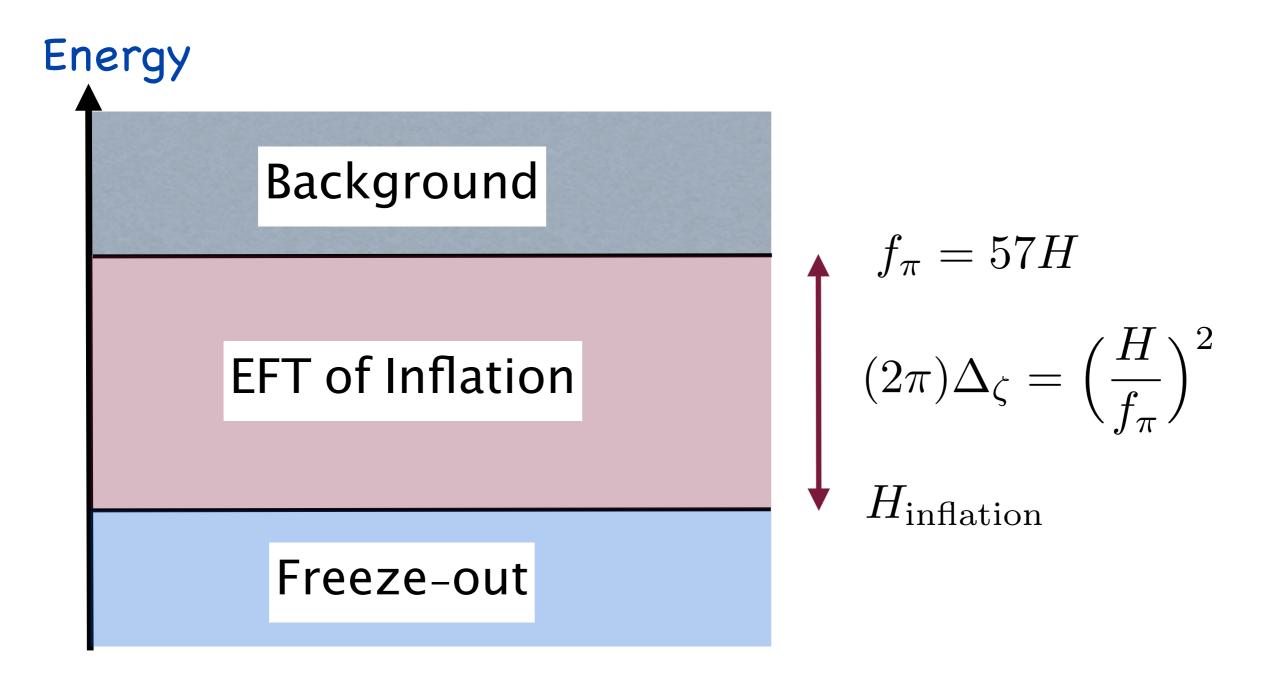
e.g. for slow-roll: 
$$f_\pi^2 = \dot{\phi}$$

(2) Hubble scale (H): energy scale of fluctuations

$$\langle H^2 \pi^2 \rangle \sim (4\pi^2) \Delta_{\zeta}^2 = \frac{H^4}{f_{\pi}^4}$$
$$\Delta_{\zeta}^2 = 2.2 \times 10^{-9}$$

## The Power Spectrum

The power spectrum is controlled by two scales:



## Non-Gaussanity

Effective action for goldstone contains interactions:

$$S_{\pi}^{\text{int}} = \int d^4x \sqrt{-g} \left[ M_2^4 \left( \dot{\pi}^3 - \dot{\pi} \frac{(\partial_i \pi)^2}{a^2} \right) + M_3^4 \dot{\pi}^3 + \dots \right]$$

Interactions give rise to non-Gaussian correlators

These coefficients are model dependent

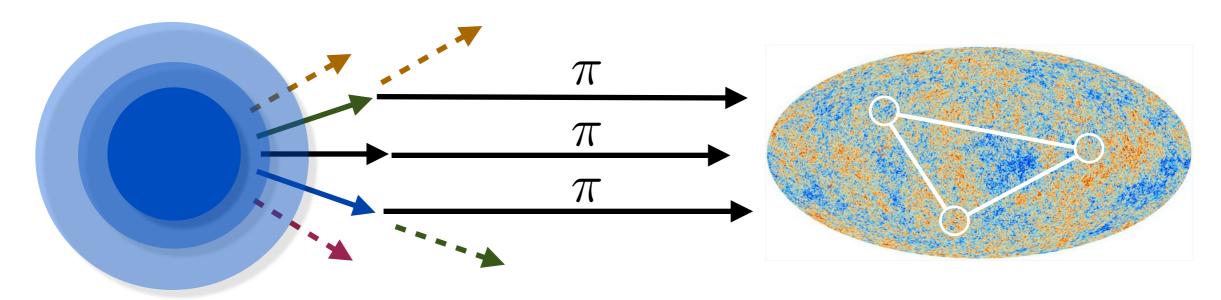
Gaussian correlation functions as  $H \rightarrow 0$  (holding the coefficients fixed)

## Non-Gaussanity

Goldstone can also interact with other fields:

$$S^{\rm mix} = \int d^4x \sqrt{-g} \left[ (-2\dot{\pi} + \partial_{\mu}\pi\partial^{\mu}\pi)\mathcal{O} + \ldots \right]$$
 Senatore & Zaldarriaga, Chen & Wang, Baumann & DG, ...

All field with  $m \lesssim H$  are excited during inflation



We observe the "decays to  $\pi$ "

## Non-Gaussanity

What is the point?

Non-Gaussanity tests particle physics at the scale  ${\cal H}$ 

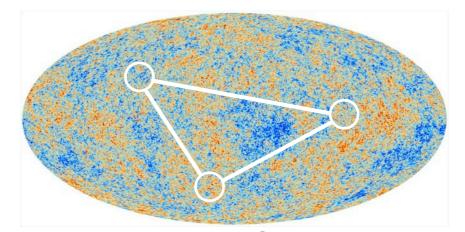
Probes self-interactions of the "inflaton"

Sensitive to any extra degrees of freedom (e.g. we can test for SUSY at these scales) Baumann & DG

This can be a very high scale:  $H \lesssim 10^{14} \, \mathrm{GeV}$ 

# Limits after Planck

Most constraints are on the 3-point function



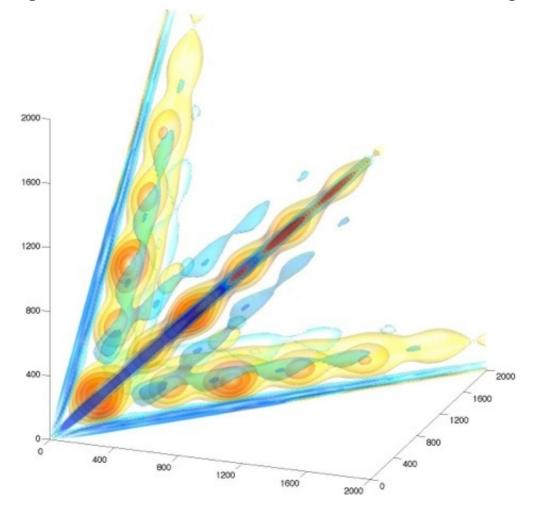
Constraint given in terms of individual templates

$$\langle \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} \rangle = B(k_1, k_2, k_3)(2\pi)^2 \delta^3(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)$$

For a given template, bound  $f_{\rm NL} \equiv \frac{5}{18} \frac{B(k,k,k)}{P_{\zeta}(k)^2}$ 

With this definition: non-gaussian =  $f_{
m NL} \sim 10^5$ 

#### Planck reports limits on 3 templates:

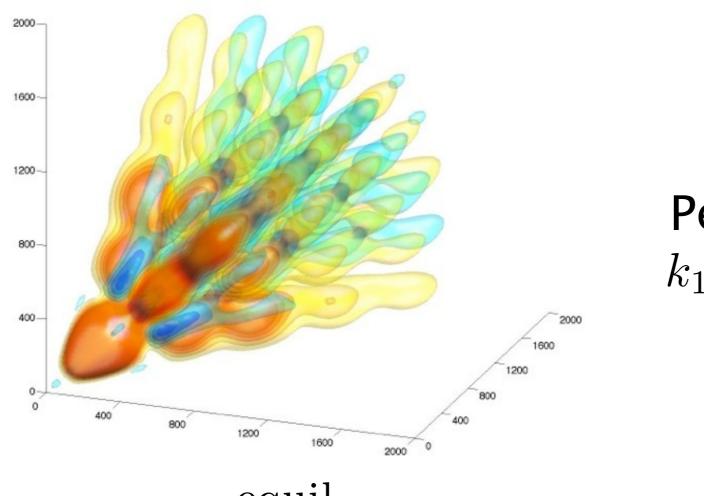


#### Peaked at:

$$k_1 \ll k_2 \sim k_3$$

$$f_{\rm NL}^{\rm local} = 2.7 \pm 5.8$$
 (68% C.I.)

#### Planck reports limits on 3 templates:

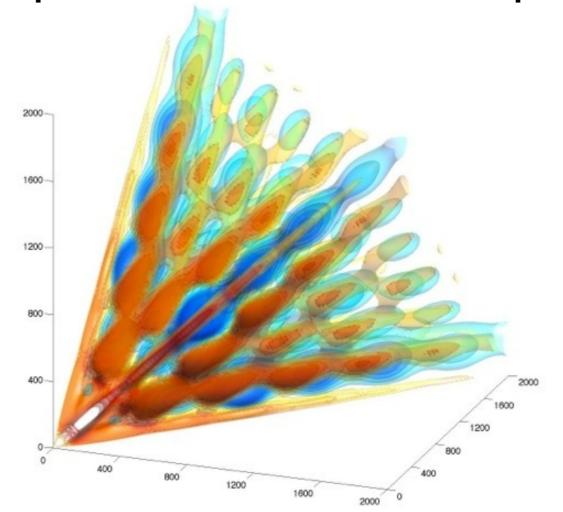


Peaked at:

$$k_1 = k_2 = k_3$$

$$f_{
m NL}^{
m equil} = -42 \pm 75$$
 (68% C.I.)

#### Planck reports limits on 3 templates:



#### Peaked at:

$$k_1 = k_2 = k_3$$

$$k_1 = k_2 = \frac{1}{2}k_3$$

$$f_{\rm NL}^{\rm ortho} = -25 \pm 39 \, (68\% \, \text{C.I.})$$

Common sentiments:

'Bounds on NG (strongly?) favor a simple mechanism'

'Data has ruled out exotic models'

Are these statements true?

Is there a model-independent expectation for the size of NG in non-slow roll models?



In single-field Inflation:

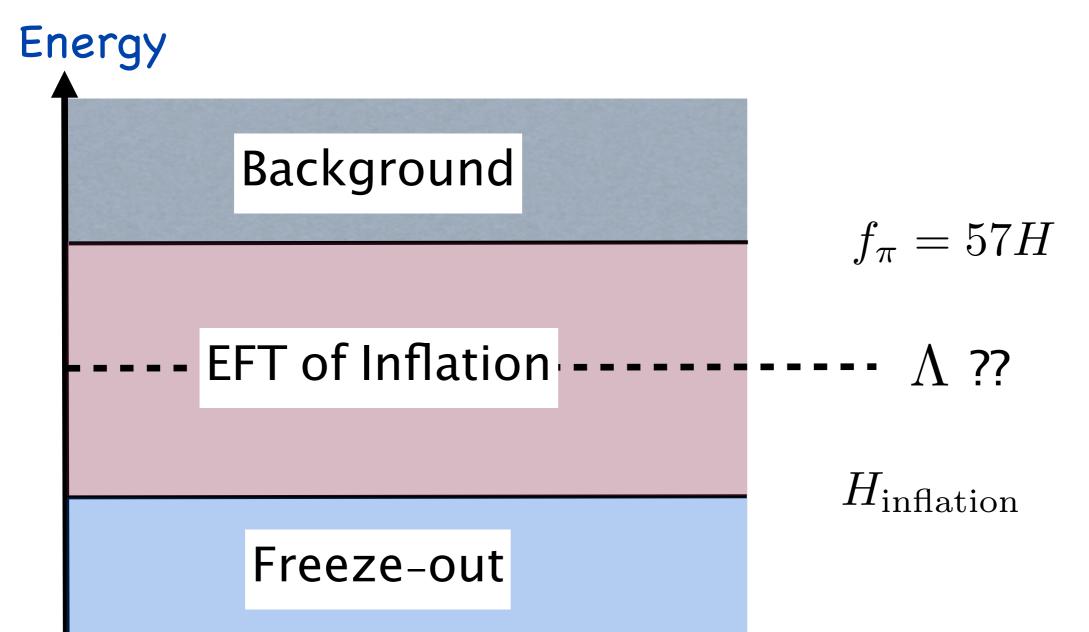
NG constrains self-interactions of  $\pi$ 

Soft pion theorems:  $f_{
m NL}^{
m local}=0$  Maldacena; Creminelli & Zaldarriaga (aka consistency condition)

Use other bounds like precision electroweak tests

I.e. Bound scale of "new physics"  $\mathcal{L}\supset rac{1}{\Lambda^2}\dot{\pi}_c^3$ 

Constrain energy of interactions:  $\mathcal{L} \supset \frac{1}{\Lambda^{\Delta-4}}\mathcal{O}_{\Delta}$ 



The primary constraint comes from equilateral:

$$\mathcal{L}_3\supset$$

$$\frac{1}{\Lambda_1^2} \dot{\pi}_c \frac{(\partial \pi_c)^2}{a^2}$$

$$\frac{1}{\Lambda_2^2}\dot{\pi}_c^3$$

$$f_{
m NL}^{
m equil.}$$

$$\frac{85}{324}(2\pi\Delta_{\zeta})^{-1}\frac{H^2}{\Lambda_1^2}$$

$$\frac{20}{729} (2\pi\Delta_{\zeta})^{-1} \frac{H^2}{\Lambda_2^2}$$

$$\Lambda_1 \gtrsim 3.5 \, H$$

$$\Lambda_2 \gtrsim 1.1 \, H$$

The primary constraint comes from equilateral:

$$\mathcal{L}_3\supset$$

$$\frac{c_1}{f_\pi^2} \dot{\pi}_c \frac{(\tilde{\partial} \pi_c)^2}{a^2}$$

$$\frac{c_2}{f_\pi^2}\dot{\pi}_c^3$$

$$f_{
m NL}^{
m equil}$$

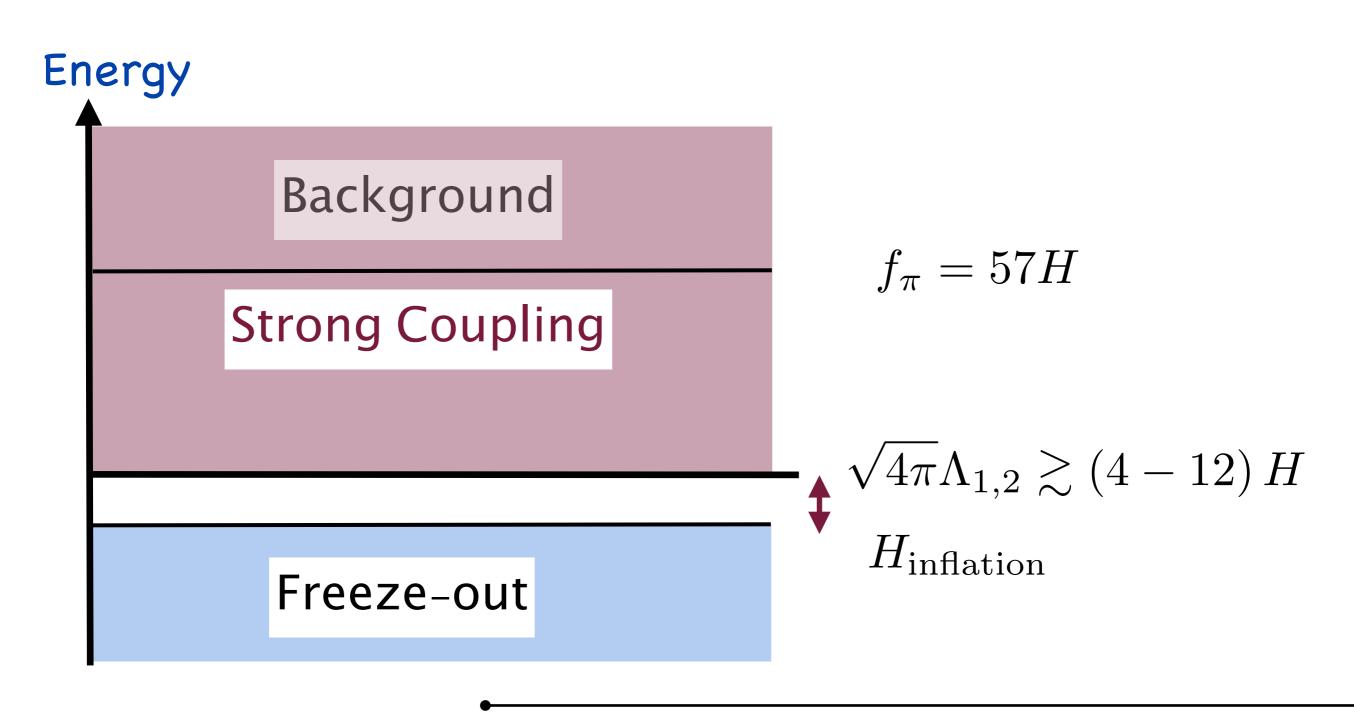
$$\frac{85}{324}c_1$$

$$\frac{20}{729}c_2$$

$$c_1 = 30 \pm 280$$

$$c_2 = 690 \pm 2100$$

Places lower bound on "strong coupling scale"



# Single-Field Slow-Roll

What would we expect from slow roll?

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - V(\phi) + \frac{1}{\Lambda^4}(\partial_{\mu}\phi\partial^{\mu}\phi)^2$$

For this to be slow-roll:  $\Lambda^2 > \dot{\phi}$ 

In slow-roll, we have a bound on equilateral

$$f_{\mathrm{NL}}^{\mathrm{equil.}} = \frac{\phi^2}{\Lambda^4} < 1$$

## Single-Field Slow-Roll

What would we expect from slow roll?





Background

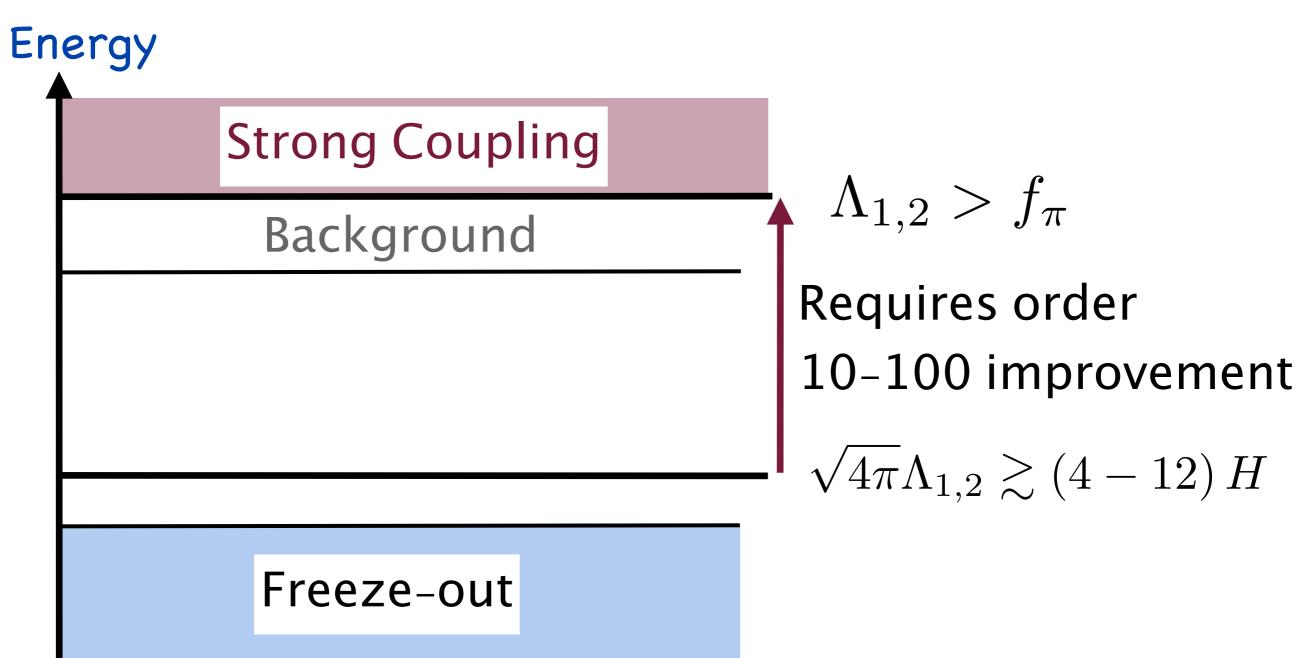
$$\Lambda > \dot{\phi}^{1/2}$$
$$\dot{\phi}^{1/2} = 57H$$

$$\dot{\phi}^{1/2} = 57H$$

Freeze-out

 $H_{\text{inflation}}$ 

Long way to go before data suggests slow-roll



#### Multi-field Inflation

Planck constraints still have teeth: Strong bounds on mixing between sectors

E.g. from slow-roll we might have

$$\mathcal{L} \supset \frac{1}{\Lambda} (\partial_{\mu} \phi \partial^{\mu} \phi) \sigma$$

Planck bounds from local shape  $(f_{\rm NL}^{\rm local})$ :

$$\Lambda \gtrsim 5 \times 10^4 \, H$$

DG et al.; Assassi et al.

#### Multi-field Inflation

Planck constraints still have teeth: Strong bounds on mixing between sectors

E.g. from slow-roll we might have

$$\mathcal{L} \supset \frac{1}{\Lambda} (\partial_{\mu} \phi \partial^{\mu} \phi) \sigma$$

Planck bounds from local shape  $(f_{\rm NL}^{\rm local})$ :

$$\Lambda \gtrsim 0.5 \left(\frac{r}{0.01}\right)^{1/2} M_{\rm pl}$$

DG et al.; Assassi et al.

#### Generalization

Limits on NG bound couplings between sectors

$$\mathcal{L} \supset \frac{1}{\Lambda^{\Delta}} (\partial_{\mu} \phi \partial^{\mu} \phi) \mathcal{O}_{\Delta}$$

For moderately NG hidden sectors

$$\Lambda \gtrsim (10^5)^{1/\Delta} H$$

Origin of the constraint largely insensitive to details

Related to single field bounds when  $\Delta\gtrsim 4$ 



#### What is the Goal?

Back to the sentiments:

'Bounds on NG (strongly?) favor a simple mechanism'

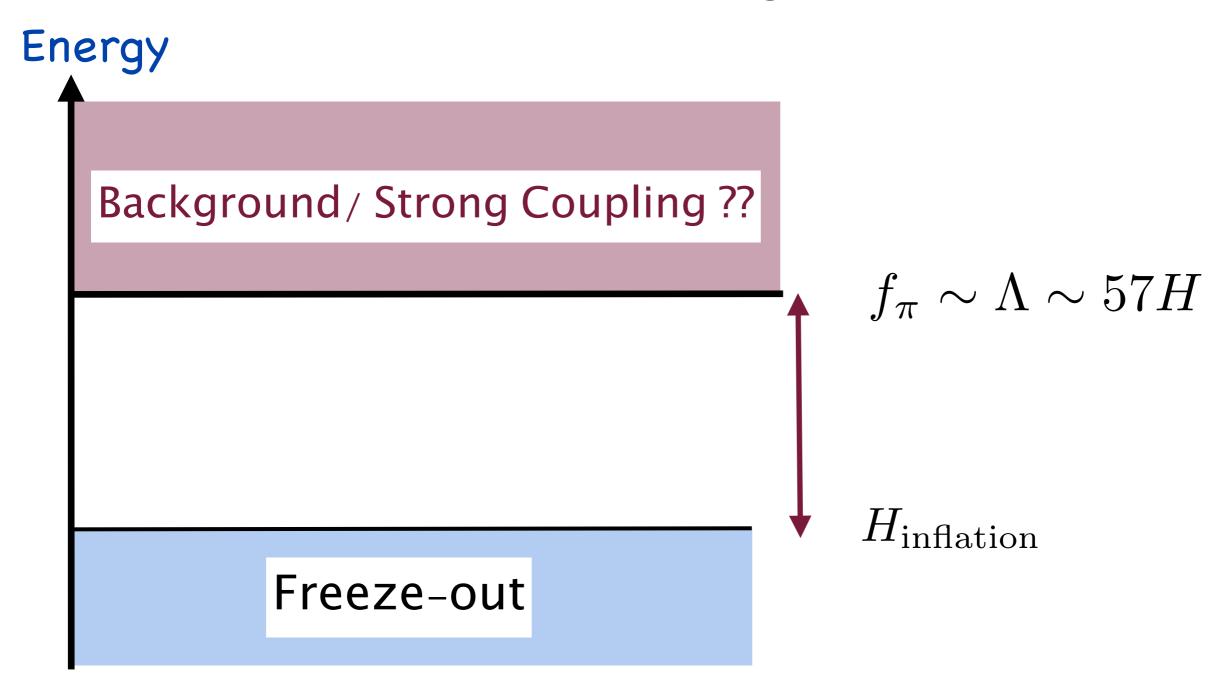
'Data has ruled out exotic models'

It seems (to me) like there is a big window left

Can we think of something "exotic"?

#### What is the Goal?

Could Inflation be due to strong dynamics?



## What is the Goal?

Could Inflation be due to strong dynamics? i.e. Is there an analogue of technicolor (or QCD)?

Time translation broken by composite operator

$$\langle \mathcal{O} \rangle = f_{\pi}^{\Delta+1} \times t$$

If the only scale is  $f_{\pi}$ , we might expect

$$\mathcal{L} \supset \frac{\mathcal{O}(1-10)}{f_{\pi}^2} \dot{\pi} (\partial \pi)^2 \longrightarrow f_{\text{NL}}^{\text{equil.}} \lesssim 5 \quad ??$$

$$(\Delta f_{\text{NL}}^{\text{equil.}})_{\text{Planck}} = 75$$

## Here are some goals:

Single-field slow-roll is ruled out for

$$f_{\rm NL}^{\rm equil.} > 1$$

A null result at this level would be <u>very</u> informative (A detection would be spectacular!)

Single field is ruled out with any detection of

$$f_{\rm NL}^{\rm local} > 0$$

Always useful to improve these bounds

# Summary

# Summary

Non-Gaussanity is high energy particle physics

Tests particles and interactions at  $H \lesssim 10^{14} \, \mathrm{GeV}$ 

Well defined threshold exists for equilateral:

$$f_{\rm NL}^{\rm equil.} \sim 1$$

Requires a measurement of the bispectrum in LSS (much more work is needed but the data will be there!)